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OOD Generalization

Our Contributions: Average Treatment Effect Total Effect Our method based on
| oo VQA-CP IVQA-CP Additional
We model the biases in De Ce_lusal Info. minimization Overall Yes/No Num other Overall Yes/No Num other #MFLOPS
_ * improves OOD acc. LXMERT Tan and Bansal (2019)  41.2 441 139 472 35.0 433 127 3638 -
multimodal datasets as without hurting ID acc.  + IRM Peyrard et al. (2022) 42.7 44.1 152 495  36.5 43.2 128 393 i
confounders in causal graph. » removes biases arising  + ATE-D (ours) 42.2 43.6 146 490 35.8 42.9 132 382 0.7
from both unimodal and + TE-D (ours) 43 .4 48.3 144  48.8 36.7 46.5 12.8  38.1 8.8
We learn confounders by; EcEDc [f(M, c)] multimodal interaction + CD-VQA Kolling et al. (2022b) 42.1 42.7 14.8 493 36.3 44.7 12.9  38.7 -
. m|n|m|Z|nq information in + GenB Cho et al. (2023) 52.8 67.3 29.8 49.7 41.3 50.7 16.7 394 50.2
_ = : D-VQA ; Wen et al. (2021) 43.9 47.5 157 498 373 45.8 139 39.2 18.9
biased representations & P(Al|do(M)) = Eec[P(A|M,c)] TE = Apc, — Amec, Data augmentation D-VQA ; + ATED 439 472 159 499 374 457 139 393 9.6
* maximizing the task acc. o approaches are D-VQA; + TE-D 44.6 47.8 157 50.8 37.8 46.2 139 40.1 27.7
Average Treatment Effect Total Effect eliminates the cumbersome but more D-VQA 52.4 65.5 297 518 446 62.9 264 399 25.0
e Propose two debiasing computes the expected value direct effect of C on M and A effective than feature Results from evaluation of our methods and other debiasing methods on VQA-CP and IVQA-CP datasets.
methods using these confounder over the distribution of by taking the difference based debiasing.
to debias multimodal mode's_ confounders to eliminates the between biased A with and
direct effect of C on M. without treatment from M.
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Dataset shortcut Average Treatment Effect-Debiasing (ATE-D)

« Boosting biased features hurts OOD accuracy
fR(z e)] X * We train a non-linear probe on confounder representations for the VQA task
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