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e create non-causal
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This work:

* Model biases as confounders
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Causality background: Confounders

This work:

e Only model language biasthroughq ¢ Model multimodal biases

e Ignores vision biases

e Ignores multimodal biases too! Causal inference

e |solate the causal effectof M on A
e Free from the confounders c

15



Causal debiasing theories

Let’s assume that the confounders C are known!

Average Treatment Effect

P(Aldo(M)) = E..c|P(A|M,c)]

By taking the expected value over confounders, it
eliminates the direct effectof Con M

16



Causal debiasing theories

Let’s assume that the confounders C are known!

Average Treatment Effect Total Effect

) Been. [f (M, )]

P(Aldo(M)) = Ecc[P(A|M, c)] TE = Amc,, — Am«.c,,

By taking the expected value over confounders, it By retaining the confounder in both sides of the
eliminates the direct effect of C on M difference, iteliminates the direct effect of Cm on M
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How to model confounders?

Spurious correlations
e simplest predictive features
e explain biased datasets (Geirhos et al., 2020) This work:
e Deep models preferentially encode dataset Modeling confounder

shortcuts under limited representation capacity « Minimizing information

(Yangetal.,2022) in representations

* maximizing the task accuracy

Neural nets tend to strikea balance between

e maximizing compression of learned representations
e fitting the labels (Shwartz-Ziv and Tishby, 2022)
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Does causal debiasing help improve out-of-distribution generalization?

VQA-CP IVQA-CP Additional

Overall Yes/No Num other Overall Yes/No Num other #MFLOPS

LXMERT (Tan and Bansal, 2019) 41.2 44.1 139 472 35.0 43.3 127  36.8 -
+ IRM (Peyrard et al., 2022) 42.7 44.1 152 49.5 36.5 43.2 12.8 39.3 -
+ ATE-D (ours) 42.2 43.6 146 49.0 35.8 429 13.2 382 0.7
+ TE-D (ours) 434 ﬁg 144  48.8 36.7 @ 12.8  38.1 8.8
+ CD-VQA (Kolling et al., 2022b)  42.1 42.7 14.8 493 36.3 447 129  38.7 -
+ GenB (Cho et al., 2023) 52.8 67.3 298 497 413 50.7 16.7 394 50.2
D-VQAf (Wen et al., 2021) 439 47.5 157 498 373 45.8 139 392 18.9
D-VQAf + ATE-D 439 47.2 159 499 374 45.7 139 393 19.6
D-VQAf + TE-D 44.6 47.8 1577 508 37.8 46.2 139 40.1 27.7
D-VQA 524 65.5 20.7 51.8 44.6 62.9 264 399 25.0

TE-D improves the accuracy of Yes/No category by 4.2% which has higher bias presence
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Does causal debiasing improve robustness to spurious features?

YQA-CP IVQA-CP Additional

Overall Yes/No Num other | Overall Yes/No Num other | #MFLOPS

LXMERT (Tan and Bansal, 2019)  41.2 44.1 139 472 35.0 43.3 127  36.8 -
+ IRM (Peyrard et al., 2022) 42.7 44.1 152 495 36.5 43.2 12.8 393 -
+ ATE-D (ours) 42.2 43.6 146 49.0 35.8 42.9 13.2 382 0.7
+ TE-D (ours) 434 48.3 144  48.8 36.7 46.5 12.8  38.1 8.8
+ CD-VQA (Kolling et al., 2022b)  42.1 42.7 14.8 493 36.3 447 129 387 -
+ GenB (Cho et al., 2023) 528 67.3 298 49.7 | 413 50.7 16.7 394 50.2
D-VQA ¢ (Wen et al., 2021) 43.9 47.5 157 498 | 373 45.8 139 39.2 18.9
D-VQAf + ATE-D 439 47.2 159 499 374 45.7 139 393 19.6
D-VQA; + TE-D 44.6 47.8 157 50.8 | 37.8 46.2 139 40.1 27.7
D-VQA 524 65.5 29.7 51.8 44.6 62.9 264 399 25.0

TE-D improves the accuracy of Yes/No category by 3.2% which has higher bias presence
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Does causal debiasing improve robustness to spurious features?

+  We propose sufficiency score (A)
as the percentage of the model's
certainty attributed to the spurious
iInput componentin prediction.

Sufficiency

\ — Z?:1 KL(f(yi|2;)||U)
i KL(f (yil2:)][U)

100

Robustness to Type 2 spurious features

are these
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Is cross-modal debiasing more effective than unimodal debiasing?

VQA-CP IVQA-CP Additional

Overall Yes/No Num other Overall Yes/No Num other #MFLOPS

LXMERT (Tan and Bansal, 2019)  41.2 44.1 139 472 35.0 43.3 12.7  36.8 -
+ IRM (Peyrard et al., 2022) 42.7 44.1 152 495 36.5 43.2 12.8  39.3 -
+ ATE-D (ours) 42.2 43.6 14.6 49.0 35.8 42.9 13.2 382 0.7
+ TE-D (ours) 43.4 48.3 144 488 36.7 46.5 12.8  38.1 8.8
+ CD-VQA (Kolling et al., 2022b)  42.1 42.7 148 493 36.3 44.7 129  38.7 -
+ GenB (Cho et al., 2023) 52.8 67.3 298 49.7 41.3 50.7 16.7 394 50.2
D-VQAs (Wen et al., 2021) 43.9 47.5 157 498 373 45.8 139 39.2 18.9
D-VQA; + ATE-D 439 47.2 159 499 37.4 45.7 13.9 393 19.6
D-VQA; + TE-D 44.6 47.8 157 508 37.8 46.2 13.9 40.1 27.7
D-VQA 2.4 6>.D 29.1 Jl.s 44.6 6.2.9Y 20.4 399 25.0

When D-VQAf is treated as the biased model in TE-D, additional improvements of 0.7 are achieved
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What kind of biases are captured by confounder representations?

TE-D

Answers from 0.34% of the vocabulary
address 67% of training questions

Most frequent answers obtained from
biased representations align with those
in train set, indicating effective
representation of dataset biases
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Conclusion

e ATE-D and TE-D model and mitigate biases by imposing causally-driven information
loss on biased features

e These methods effectively eliminate biases arising from both unimodaland
multimodal interactions

e Data augmentation based approaches, although cumbersome, are more effective
than feature-based debiasing
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