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Biases in VQA:

● spurious correlations in the 

dataset 

This work:
• Model biases as confounders
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This work:

● Model multimodal biases

Causal inference

● Isolate the causal effect of M on A

● Free from the confounders c

● Only model language bias through q

● Ignores vision biases

● Ignores multimodal biases too!
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Average Treatment Effect Total Effect

Let’s assume that the confounders C are known!

By retaining the confounder in both sides of the 
difference, it eliminates the direct effect of Cm on M

By taking the expected value over confounders, it 
eliminates the direct effect of C on M
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Spurious correlations

● simplest predictive features

● explain biased datasets (Geirhos et al., 2020)

● Deep models preferentially encode dataset 

shortcuts under limited representation capacity 

(Yang et al., 2022)

Neural nets tend to strike a balance between

● maximizing compression of learned representations

● fitting the labels (Shwartz-Ziv and Tishby, 2022)

This work:

Modeling confounder

• Minimizing information 
in representations

• maximizing the task accuracy
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TE-D improves the accuracy of Yes/No category by 4.2% which has higher bias presence
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• We propose sufficiency score (λ) 

as the percentage of the model's 
certainty attributed to the spurious 
input component in prediction.
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When D-VQAf is treated as the biased model in TE-D, additional improvements of 0.7 are achieved



What kind of biases are captured by confounder representations?
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TE-D

• Answers from 0.34% of the vocabulary 
address 67% of training questions

• Most frequent answers obtained from 
biased representations align with those 
in train set, indicating effective 
representation of dataset biases



Conclusion
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● ATE-D and TE-D model and mitigate biases by imposing causally-driven information 

loss on biased features

● These methods effectively eliminate biases arising from both unimodal and 

multimodal interactions

● Data augmentation based approaches, although cumbersome, are more effective 

than feature-based debiasing
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