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Motivation

e Refer to ethically sensitive information as sensitive information

e In pretraining, LLMs learn...
o Personal information
o Copyrighted information
o Knowledge that could be used to harm others
(e.g. instructions for crimes, CBRN weapons)
o Various toxic beliefs/content
o Factual information that has gone out of date (could become misinfo)



Motivation

e How can we "delete" specific sensitive information from language models when we
do not want models to know or express this information?

o Defense against extraction attacks

e How do we test whether that specific information was successfully deleted?

o Extraction Attacks
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Threat model

Threat model - “is info truly deleted?”
e Adversary seeks answer A to question Q
e Given a model, adversary obtains candidate set C of size B (budget)
e AdversarysucceedsifAisinC

Why B attempts?
1. Password attempts
2. Parallel pursuit



Deletion Defense

Deletion metric - How good is defense?

arg min AttackSuccess@B(M™) + ADamage(M*, M)
M*

Need to balance:

1. Attack Success: whether answer is in candidate set
2. Damage: change in model accuracy for unrelated questions



Model editing for deletion

Applying model editing for deletion - This is the defense

Tasks/data:
e Ourtestbed isfactual information (CounterFact and ZSRE)

Model editing;:
e Optimizers:
o ROME, MEMIT
e Objectives:
o ErrorInjection > say something else
o Fact Erasure > minimize answer probability
o Empty Response > say “l don’t know”
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Attacks

Attacking models for “deleted” info
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Attacking models for “deleted” info
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Results

38% attack success at B=10 for GPT-J facts deleted by ROME + Empty Response
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Improving Defense Methods

e Blackbox defense reduces to paraphrase + adversarial robustness
e Whitebox defense: delete information wherever it appears in model
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Improving Defense Methods

e Blackbox defense reduces to paraphrase + adversarial robustness
e Whitebox defense: delete information wherever it appears in model
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Results

With whitebox defense
1. Whitebox attack: 38% » 2.4%
2. Blackbox attack rate seems unchanged

See paper for blackbox defense
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Conclusion

e Want to delete sensitive information under adversarial extraction attacks
e Probing hidden states can extract information with low probability of generation

e Whitebox defenses help, but no single defense works against all attacks
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Thank you

Paper: https://arxiv.org/abs/2309.17410
Code: https://github.com/Vaidehi99/InfoDeletionAttacks



https://arxiv.org/abs/2309.17410
https://github.com/Vaidehi99/InfoDeletionAttacks
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