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Motivation

● Refer to ethically sensitive information as sensitive information
● In pretraining, LLMs learn…

○ Personal information
○ Copyrighted information
○ Knowledge that could be used to harm others

(e.g. instructions for crimes, CBRN weapons)
○ Various toxic beliefs/content
○ Factual information that has gone out of date (could become misinfo)
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Motivation
● How can we "delete" specific sensitive information from language models when we 

do not want models to know or express this information?

○ Defense against extraction attacks

● How do we test whether that specific information was successfully deleted?

○ Extraction Attacks
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Attack-and-Defense framework
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Attack-and-Defense framework



Attack-and-Defense framework
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Attack-and-Defense framework
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Threat model
Threat model - “is info truly deleted?”
● Adversary seeks answer A to question Q
● Given a model, adversary obtains candidate set C of size B (budget)
● Adversary succeeds if A is in C

Why B attempts?
1. Password attempts
2. Parallel pursuit
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Deletion Defense
Deletion metric - How good is defense?
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Need to balance:

1. Attack Success: whether answer is in candidate set
2. Damage: change in model accuracy for unrelated questions



Model editing for deletion
Applying model editing for deletion - This is the defense

Tasks/data:
● Our testbed is factual information (CounterFact and ZSRE)

Model editing:
● Optimizers: 

○ ROME, MEMIT
● Objectives: 

○ Error Injection → say something else
○ Fact Erasure → minimize answer probability
○ Empty Response → say “I don’t know”
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Attacks
Attacking models for “deleted” info
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Whitebox Attack



Attacks
Attacking models for “deleted” info
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Whitebox Attack Blackbox Attack



Results
38% attack success at B=10 for GPT-J facts deleted by ROME + Empty Response
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Improving Defense Methods
● Blackbox defense reduces to paraphrase + adversarial robustness
● Whitebox defense: delete information wherever it appears in model
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Improving Defense Methods
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● Whitebox defense: delete information wherever it appears in model
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Improving Defense Methods
● Blackbox defense reduces to paraphrase + adversarial robustness
● Whitebox defense: delete information wherever it appears in model
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Maximize entropy



Results

With whitebox defense
1. Whitebox attack: 38% → 2.4%
2. Blackbox attack rate seems unchanged

See paper for blackbox defense
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Conclusion

● Want to delete sensitive information under adversarial extraction attacks

● Probing hidden states can extract information with low probability of generation

● Whitebox defenses help, but no single defense works against all attacks
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Thank you

Paper:  https://arxiv.org/abs/2309.17410
Code: https://github.com/Vaidehi99/InfoDeletionAttacks

https://arxiv.org/abs/2309.17410
https://github.com/Vaidehi99/InfoDeletionAttacks
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